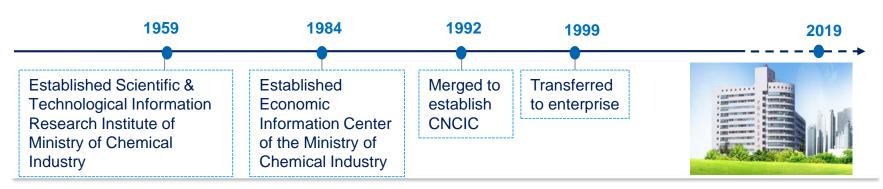


Has PVC already entered the next round 'up cycle' in China?

China National Chemical Information Centre
CNCIC


TAIPEI, TAIWAN May 17th, 2019

Introduction on CNCIC	
Global PVC overview	4
Chinese PVC market context	8
Supply	14
Demand	20
Trade	24
Price and profitability	27
Policies and regulations	

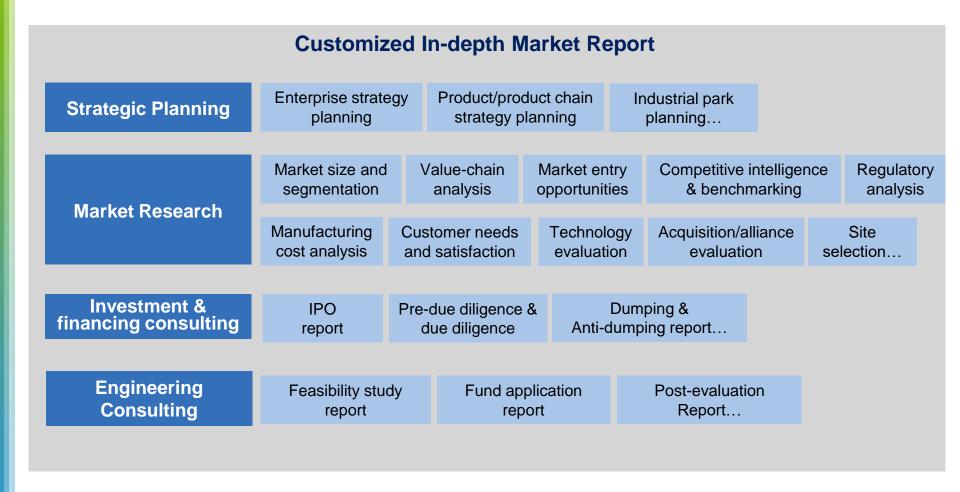
CNCIC is an authoritative chemical industrial information service & consulting institute in China, and focuses on chemical industrial market research for nearly 60 years

The largest chemical resource center in China

- China National Library of Engineering-Chemical Branch
- Member of NSTL (National Science and Technology Library)

Professional research platforms

- Research Institute of Industry Planning
- Research Institute of Industry Economics
- China National Petrochemicals Information Center
- China National Polymers Information Center
- China National Fertilizer Information Center
- China National Pesticide Technology Economic Development Center
- China National Silicon &Fluorine Material Information Research Center

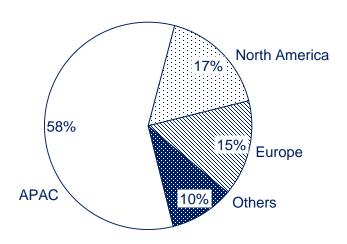

Reliable internal database

- CNCIC Database including Chinese Petrochemicals and other commodity chemicals
- CNCIC Price Index

Broad industrial communication platforms

- China International Exhibition Center of Chemical Industry
- Annually Organize and hold 50+ high-quality chemical conferences & exhibitions in China and abroad
- China Light Hydrocarbons Utilization Association
- China Fine Chemical Material and Intermediate Association

CNCIC Consulting provides the most reliable market insight and actionable recommendations to improve performance at every level of your organization and develop effective strategies in a dynamic market


In 2018, global PVC capacity is around 55.3 Mt/y, and APAC account for 58% of the total

• Global PVC capacity

- In 2018, the total global PVC capacity is around 55.3 Mt/y, increasing by 3% compared with 2017 and by a CAGR of 0.6% since 2013
- Northeast Asia, North America and Europe account for largest capacities, representing nearly 90% of the total
- In 2016-2018, the expansion rate of PVC capacity is relatively slow, while the demand for PVC is growing steadily

Source: IHS Markit

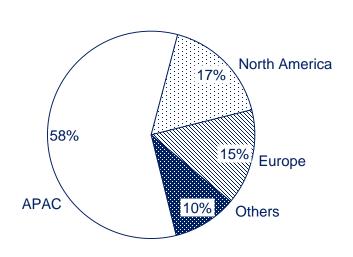
Global PVC capacity by region in 2018

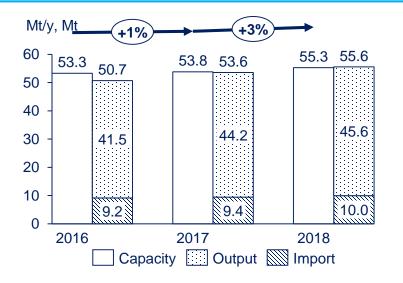
In 2018, global PVC capacity is around 55.3 Mt/y, and APAC account for 58% of the total

Global PVC capacity

- In 2018, the total global PVC capacity is around 55.3 Mt/y, increasing by 3% compared with 2017 and by a CAGR of 0.6% since 2013
- Northeast Asia, North America and Europe account for largest capacities, representing nearly 90% of the total
- In 2016-2018, the expansion rate of PVC capacity is relatively slow, while the demand for PVC is growing steadily

Global PVC production

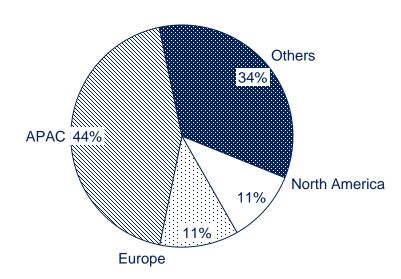

The total global PVC output is around 45.6 Mt in 2018 with an average operating rate of 82%


Source: IHS Markit

Global trade of PVC increases by a CAGR of 4.3% over the past three years

Global PVC capacity by region in 2018

Global PVC output and imports from 2016 to 2018

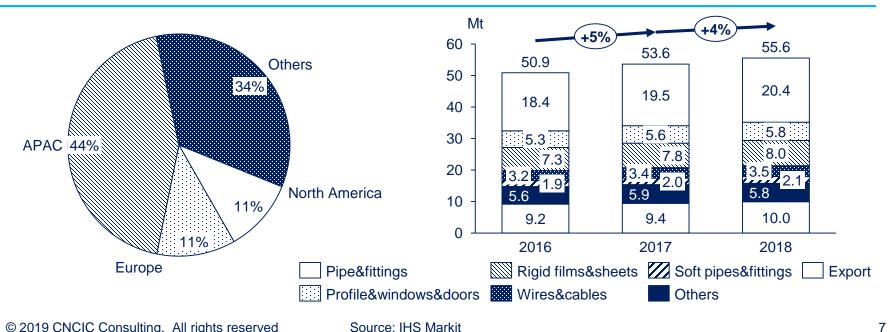

In 2018, global PVC demand is around 55.6 Mt; the supply and demand are not geographically balanced

Global PVC demand

 Demand for PVC is aligned with economic development, which is mainly driven by construction sector and the growth gets slower for well developed economies

Source: IHS Markit

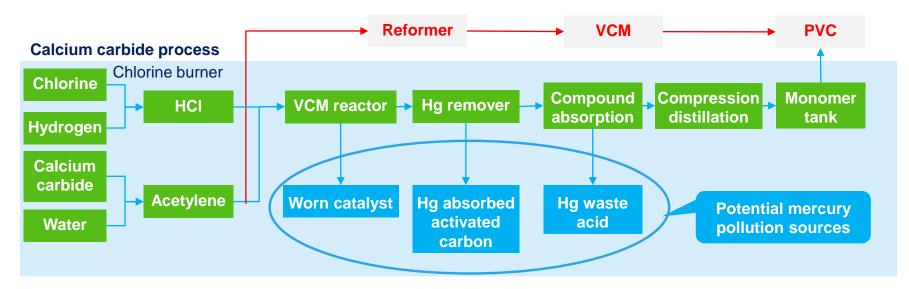
Global PVC demand by region in 2018


In 2018, global PVC demand is around 55.6 Mt; the supply and demand are not geographically balanced

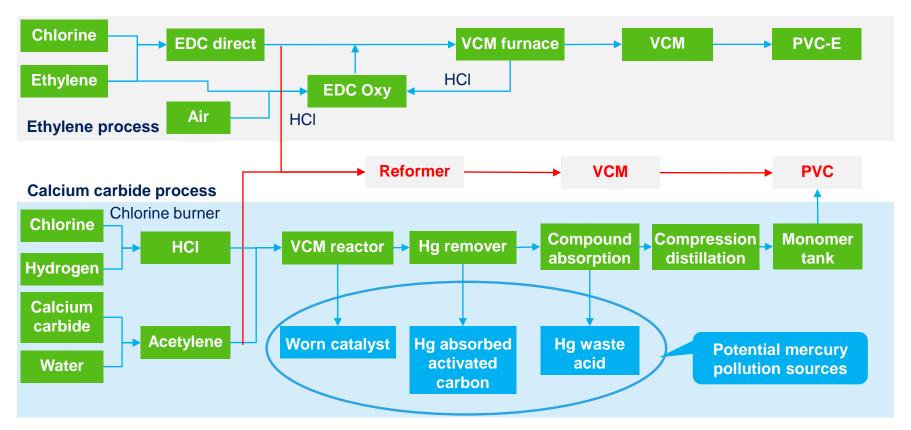
Global PVC demand

- Demand for PVC is aligned with economic development, which is mainly driven by construction sector and the growth gets slower for well developed economies
- The global PVC demand increases by a CAGR of 5% over the past 3 years
- Pipe and fittings amongst rigid products represent the main application fields, accounting for 37% of the total demand in 2018
- In North America, PVC is mainly used for pipe and siding, while in Europe and Asia, it is most commonly used for pipes and window frames

Global PVC demand by region in 2018

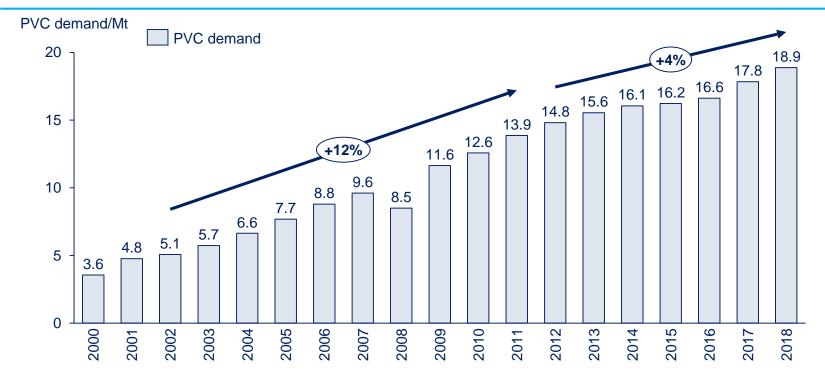

Global PVC demand by segments in 2018

Calcium carbide (CP) and ethylene (EP) processes are commonly used to produce PVC in China, with the former accounts for majority of the share


- Due to rich coal and limited natural gas and crude resources (essentially ethylene) in China, PVC is more commonly produced by calcium carbide process
 - Mercury-containing waste acid and catalyst are produced and China approved <Minamata Convention on Mercury> in Aug. 2017 to encourage low mercury and mercury-free process
 - 85% of mercury is consumed in producing PVC through CP, representing 17 kt waste catalysts annually

Calcium carbide (CP) and ethylene (EP) processes are commonly used to produce PVC in China, with the former accounts for majority of the share

- Due to rich coal and limited natural gas and crude resources (essentially ethylene) in China, PVC is more commonly produced by calcium carbide process
 - Mercury-containing waste acid and catalyst are produced and China approved <Minamata Convention on Mercury> in Aug. 2017 to encourage low mercury and mercury-free process
 - 85% of mercury is consumed in producing PVC through CP, representing 17 kt waste catalysts annually

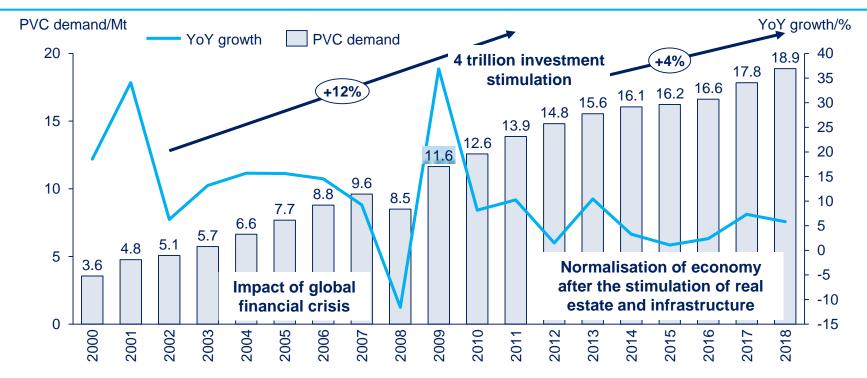


The PVC consumption is strongly correlated to macroeconomy in China

Evolution

- From 2002 to 2012, PVC consumption increased by a CAGR of 12%, where the GDP was above 8% despite the temporary depression in 2008
- Since 2012, PVC demand slowed down by a CAGR of 4% over the past 7 years, during which the GDP fluctuated around 6%
- The US-China trade dispute had less impact on PVC trade owing to a large domestic demand capacity

PVC demand evolution from 2000 to 2018



The PVC consumption is strongly correlated to macroeconomy in China

Evolution

- From 2002 to 2012, PVC consumption increased by a CAGR of 12%, where the GDP was above 8% despite the temporary depression in 2008
- Since 2012, PVC demand slowed down by a CAGR of 4% over the past 7 years, during which the GDP fluctuated around 6%
- The US-China trade dispute had less impact on PVC trade owing to a large domestic demand capacity

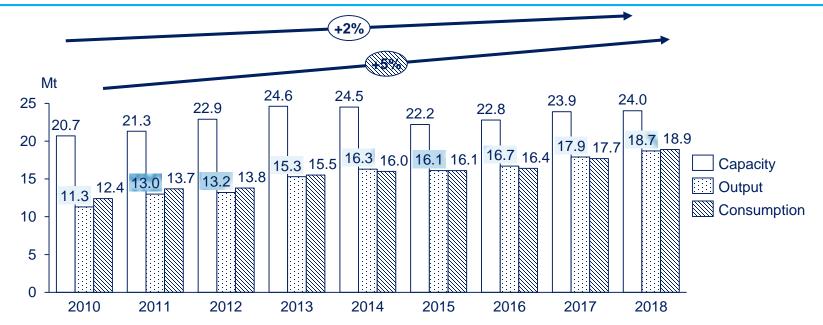
PVC demand evolution from 2000 to 2018

As demand is growing faster than supply and supply is approaching the upper limit, insufficient supply is likely to appear in the next 5 years

Evolution

- Considering regular maintenance, 80% of operating rate has already been high; given the environment restrictions, especially in the East regions, the Chinese PVC production is no longer in overcapacity but close to the upper operation limit
 - ♦ If demand continues to grow steadily, the supply of PVC may not be sufficient

PVC capacity and consumption in China from 2010 to 2018



As demand is growing faster than supply and supply is approaching the upper limit, insufficient supply is likely to appear in the next 5 years

Evolution

- Considering regular maintenance, 80% of operating rate has already been high; given the environment restrictions, especially in the East regions, the Chinese PVC production is no longer in overcapacity but close to the upper operation limit
 - ♦ If demand continues to grow steadily, the supply of PVC may not be sufficient
- Demand grew at a CAGR of 5% since 2010 and this was mainly driven by the growth in construction and infrastructure sectors

PVC capacity and consumption in China from 2010 to 2018

In 2018, there are 75 PVC manufacturers, and top 10 producers account for 45.9% of the total, similar to 2017

Major manufacturers

- There are 75 PVC manufacturers in 2018; Top 10 producers account for 45.9% of China's total capacity, similar to 2017
 - ♦ The concentration ratio remains similar over the past 3 years and the market is consolidating
- Capacity is mainly distributed in Northwest, North and East regions in China due to abundant raw material supply
- Manufacturers located in the East generally have a lower operating rate due to stricter restrictions on environmental protection regulations

Capacity of major PVC manufacturers in 2018

No.	Company	Region	PVC capacity /kt/y	Share/%	Process
1	Zhongtai Chemical ¹	Northwest	2,330	9.7%	CP
2	ChemChina ²	-	1,300	5.4%	CP/EP
3	Tianye Group	Northwest	1,300	5.4%	CP
4	Beiyuan Chemical	Northwest	1,250	5.3%	CP
5	Bohai Chemical ³	North	1,200	5.0%	EP
6	Yihua Group ⁴	-	1,000	4.2%	CP
7	Qinghai Salt Lake Industry	Northwest	800	3.3%	CP
8	Xinfa Group	East	750	3.1%	CP
9	Junzheng Energy	North	700	2.9%	CP
10	Xinjiang Shengxiong	Northwest	400	1.7%	CP
-	Others	-	13,010	54.1%	CP/EP
-	Total	-	24,040	100.0%	-

Note. 1: Zhongtai Chemical and Shengxiong Energy; 2: Bluestar (Shenyang Chemical), New Materials (Dezhou Shihua, Hebei Shenghua, Henan Yuhang, Heilongjiang Haohua); 3: Dagu Chemical, Lejin Bohai Chemistry; 4: Xinjiang, Qinghai and Inner Mongolia

Around 2,830 kt/y new capacity is expected to be added in 2019, but only around 670 kt/y has a clear timeline for operation

Proposed new capacity

- Around 15 new PVC capacity is proposed to be added from 2019 and mainly distributed in the North, Northwest, and East regions
- In total, around 1,320 kt/y capacity is expected to be operated, including
 - ♦ 6 projects having a clear timeline and approx. 670 kt/y in operation by the end of 2019
 - ♦ 30% capacity of projects with unclear timeline, i.e. 650 kt/y in operation by the end of 2019

Proposed new capacity on PVC (including EPVC) in China

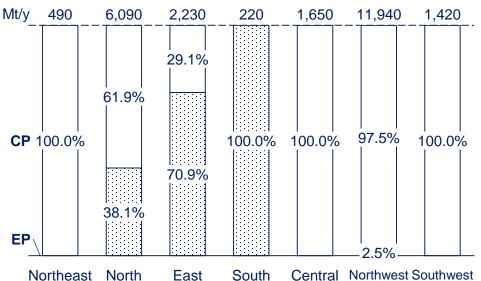
No.	Manufacturer	Manufacturer CN	Region	Province	Capacity kt/y	Process	Est. operating year	
1	Dezhou Shihua, ChemChina	德州实华	East	Shandong	200	CP+EDC	Nov. 2019	
2	Anhui Huasu	安徽华塑	East	Anhui	160	CP	Dec. 2019	
3	Taizhou Liancheng	泰州联成	East	Jiangsu	150	EP	May 2019	
4	Xinjiang Zhongtai	新疆中泰	Northwest	Xinjiang	120	CP	May 2019	
5	Ningbo Hanhua	宁波韩华	East	Zhejiang	100	EP	Jul. 2019	
6	Shanxi Ruiheng	山西瑞恒	North	Shanxi	10	CP	Jun. 2019	
	Sub total				740	70 kt/	70 kt/y in pending	
7	Ordos Chlor-Alkali Group	鄂尔多斯氯碱化工	North	Inner Mongolia	400	CP	Pending	
8	Qingdao Haijing	青岛海晶	East	Shandong	400	EP	Pending	
9	Hebei Julong Chemical	河北聚隆化工	North	Hebei	230	EP	Pending	
10	Hebei Shenghua	河北盛华	North	Hebei	200	CP	Pending	
11	Ningxia Jinyuyuan	宁夏金昱元	Northwest	Ningxia	200	CP	Pending	
12	China Salt Jilantai	中盐吉兰泰	North	Inner Mongolia	160	CP	Pending	
13	Taizhou Liancheng	泰州联成	East	Jiangsu	150	CP	Pending	
14	Tangshan Sanyou	唐山三友	North	Hebei	20	CP	Pending	
	Others				330			
	Sub total				2,090	1,440 k	1,440 kt/y in pending	
	Total				2,830			

Calcium carbide process is more commonly used in China

- PVC process by capacity
 - CP increased by 20% over the last decade
 - In 2018, 20.7 Mt/y and 4.0 Mt/y are produced from CP and EP, respectively, accounting for 84% and 16% of total capacity
 - ♦ Newly added capacity in 2018 are all ethylene based process
 - ♦ 66% CP and 34% EP new capacities are expected to be added in 2019
 - EP capacity includes plants with back integrated EDC, and stand-alone PVC plants dependent on imported VCM or EDC

China's PVC capacity by process from 2006 to 2019 (Mt/y)

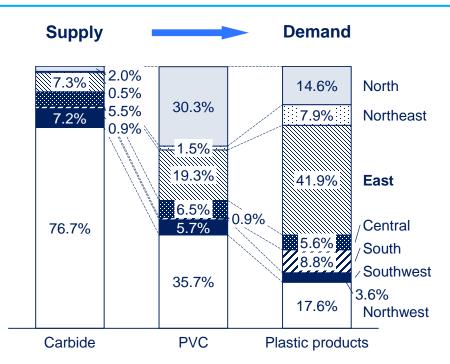
VCM: vinyl chloride monomer; EDC: ethylene dichloride; PVC-E: Emulsion PVC


Calcium carbide process is more commonly used in China

PVC process by capacity

- CP increased by 20% over the last decade
- In 2018, 20.7 Mt/y and 4.0 Mt/y are produced from CP and EP, respectively, accounting for 84% and 16% of total capacity
 - ♦ Newly added capacity in 2018 are all ethylene based process
 - ♦ 66% CP and 34% EP new capacities are expected to be added in 2019
- EP capacity includes plants with back integrated EDC, and stand-alone PVC plants dependent on imported VCM or EDC
- EP capacities are mainly distributed in the East region due to relatively abundant ethylene supply

China's PVC capacity by process from 2006 to 2019 (Mt/y) Process by region in 2018 (Mt/y)


VCM: vinyl chloride monomer; EDC: ethylene dichloride; PVC-E: Emulsion PVC

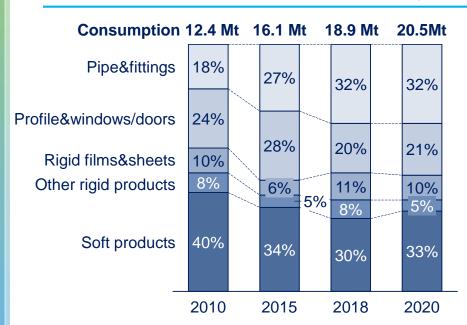
Supply distribution and transportation

- Calcium carbide producers are mainly concentrated in the northern, central and western regions, where there are abundant and cheap electricity, coal and calcium carbide resources
- Ethylene producers are mainly located near the coastal areas, where raw material transportation is more convenient

Production distribution of carbide, PVC resin and plastic products in 2018

Supply distribution and transportation

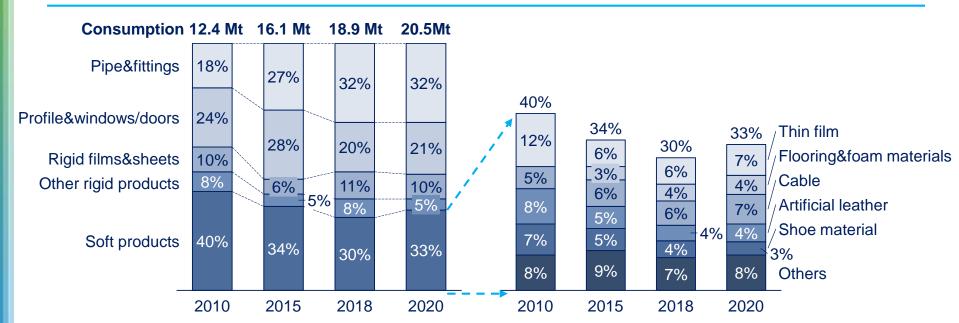
- Calcium carbide producers are mainly concentrated in the northern, central and western regions, where there are abundant and cheap electricity, coal and calcium carbide resources
- Ethylene producers are mainly located near the coastal areas, where raw material transportation is more convenient
- The demand is mainly distributed in the East and South, and the supply and demand are not balanced


Production distribution of carbide, PVC resin and plastic products in 2018

PVC demand is 18.9 Mt in 2018, by a CAGR of 5.4% over the past decade, and more than 60% is used in construction sector

- PVC downstream application
 - In 2018, PVC demand is 18.9 Mt, around 32% consumed in pipe and fittings, 21% in profile, windows and doors, and 30% in soft products
 - ♦ Amongst soft products, thin film and cables are the most commonly applications

PVC consumption by application in China

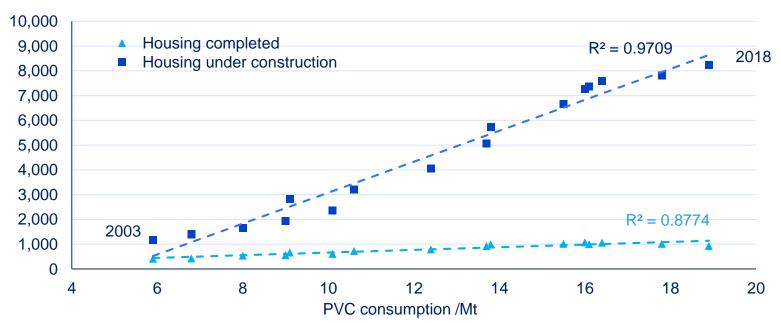


PVC demand is 18.9 Mt in 2018, by a CAGR of 5.4% over the past decade, and more than 60% is used in construction sector

PVC downstream application

- In 2018, PVC demand is 18.9 Mt, around 32% consumed in pipe and fittings, 21% in profile, windows and doors, and 30% in soft products
 - ♦ Amongst soft products, thin film and cables are the most commonly applications
- PVC is mostly consumed in construction sector in China
 - ♦ Around 60% of PVC is to produce building materials, such as pipes, profiles and rigid sheets etc.
 - ◆ Due to scheduling of construction and stock-up, PVC consumption in building industry normally lags behind for 6-12 months

PVC consumption by application in China

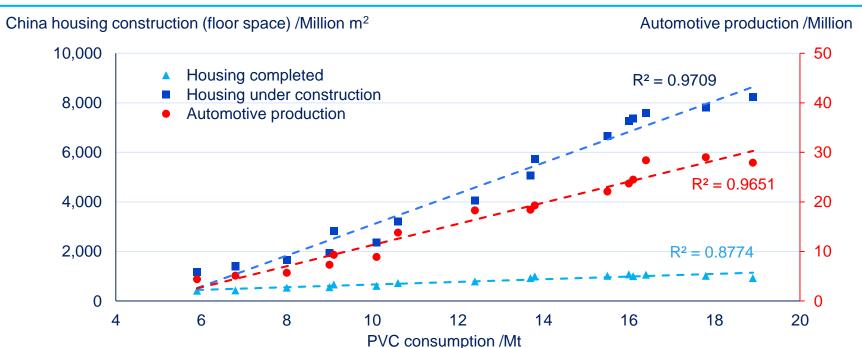

PVC consumption is positively correlated with house construction and automotive industries in China

PVC downstream application

- PVC consumption is positively correlated with real estate
- Although there is a large demand in such industries, substitutes, such as PP, PE, aluminium profile become more competitive
 - ♦ PVC consumption in profile decreased over the past decade
- In the downturn of real estate industry, government infrastructure investment will increase or at least stabilise the PVC demand to hedge against the decline

PVC consumption vs. house construction from 2003 to 2018

China housing construction (floor space) /Million m²

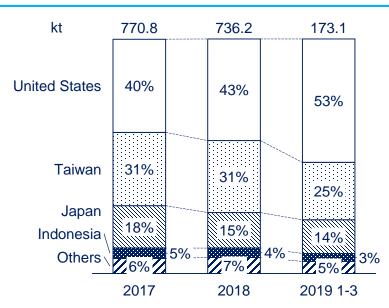


PVC consumption is positively correlated with house construction and automotive industries in China

• PVC downstream application

- PVC consumption is positively correlated with real estate and automotive industries
- Although there is a large demand in such industries, substitutes, such as PP, PE, aluminium profile become more competitive
 - ♦ PVC consumption in profile decreased over the past decade
- In the downturn of real estate industry, government infrastructure investment will increase or at least stabilise the PVC demand to hedge against the decline

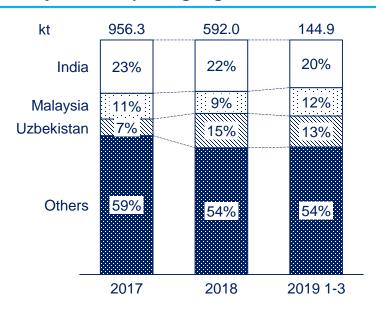
PVC consumption vs. house construction and automotive production from 2003 to 2018



The US-China trade conflicts have little impacts on PVC imported from the US

- The net export only accounts for less than 2% of domestic consumption
 - In 2018, the total consumption is around 18.9 Mt, where the next trade is only 140 kt
- Less impacts appear after MoC of China imposed 25% tariff on some imported chemicals originating in the US
 - The PVC imported from the US is not affected. 320 kt is imported, slightly higher than the total import in 2017, accounting for 43% of total Chinese import

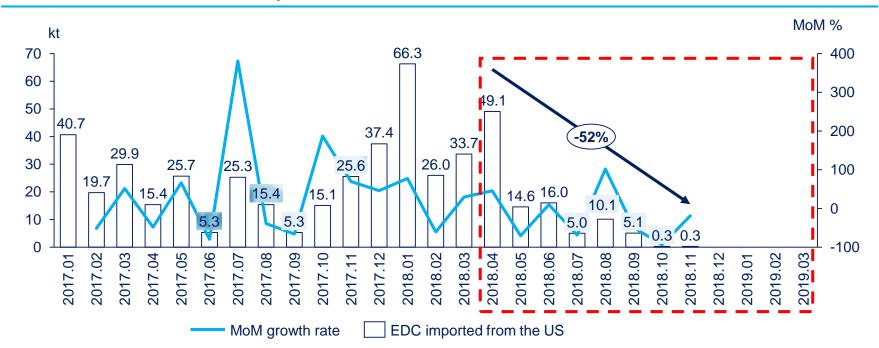
Major PVC importing regions from 2017 to 2019


The US-China trade conflicts have little impacts on PVC imported from the US

- The net export only accounts for less than 2% of domestic consumption
 - In 2018, the total consumption is around 18.9 Mt, where the next trade is only 140 kt
- Less impacts appear after MoC of China imposed 25% tariff on some imported chemicals originating in the US
 - The PVC imported from the US is not affected. 320 kt is imported, slightly higher than the total import in 2017, accounting for 43% of total Chinese import
- Chinese PVC is mainly exported to Asia countries, such as India, Malaysia, Uzbekistan and Kazakhstan, accounting for nearly 40% of total export
 - Negligible amount of PVC exports to the US and there is no impact on US lifting tariff on Chinese PVC

Major PVC importing regions from 2017 to 2019

Major PVC exporting regions from 2017 to 2019

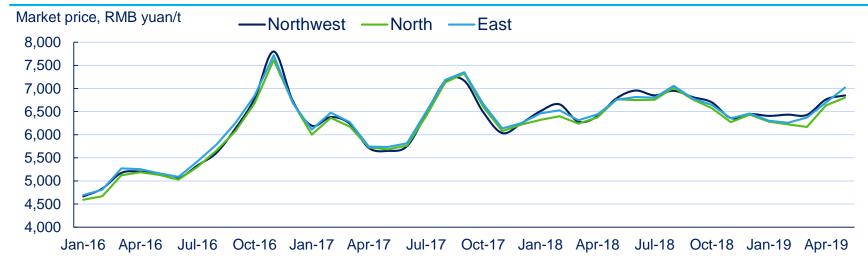


The US-China trade conflicts have some negative impacts on PVC raw material, EDC, to some extents

- EDC is a main raw material to produce PVC through Ethylene process, and the US and South Korea are the major importing countries for this product
 - In 2017, China imported 260.6 kt and 75.4 kt from the US and South Korea, respectively; while in 2018,
 EDC imported from the US decreased by 34.7 kt
 - After China imposing a 25% tariff, causing the higher price for EDC, the importing quantity decreased by 52% from April to November 2018
 - Negative impacts impose on Chinese producers who rely on importing EDC for PVC production

EDC imported from the US from Jan. 2017 to Mar. 2019

The PVC resin market price is similar in different regions


Market price by region

- PVC average prices amongst different regions do not vary greatly; price in East region is generally higher than Northwest and North

Price evolution

- ♦ From 2016, the price increase in coal led to an increase in PVC, where it reached above RMB 8,000 yuan/t, followed by a fallback to around RMB 6,000 yuan/t in 1Q2017
- ♦ Since 2Q2017, the 'Environmental Storm' led to a large number of stall and limited capacity, where such tight supply, once again, pushed the price to around RMB 7,500 yuan/t
- ◆ The price fluctuated around RMB 6,500 yuan/t
- ♦ The average price is expected to fluctuate around RMB 7,000 yuan/t, supported by the likely increase of crude oil and high demand

PVC resin price by region (SG-5) from 2016 to 2019 in China

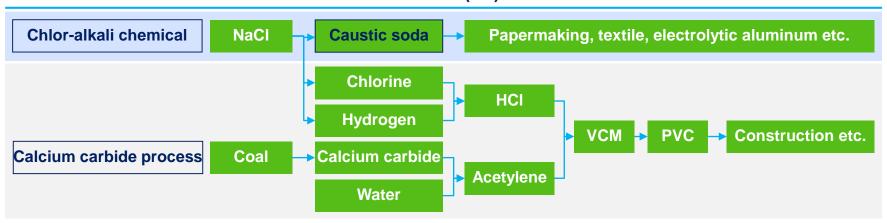
PVC gross profit in different processes becomes more diverged; the profit lost again after 3Q2018

Market profitability

- Evolution

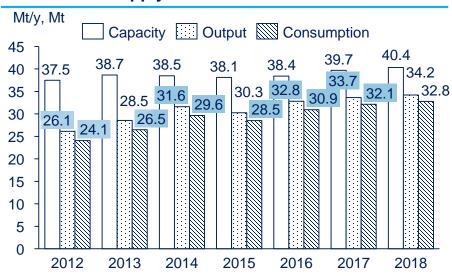
- ♦ The PVC industry has been through an industry-wide loss in 2014 and 2015 due to economic downturn and 'Environmental Protection Storm', with avg. EBT of -0.4% ~ -0.5%
- ♦ In 2016, the profit was lost by 27%, and became profitable in 2017
- ♦ From 3Q2018, the profit decreased again due to the price increase in raw chemical materials

- Comparison

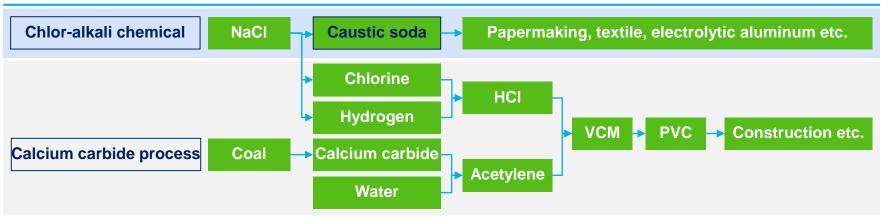

- ♦ From 2014 to 2016, manufacturers, located in in Xinjiang, Inner Mongolia, Shaanxi and Shanxi provinces, have better cost advantages and profit; the price advantages seem lost after 4Q2018
- ♦ For a common practice, when PVC average operating rate is around 80%, upstream feedstock, such as calcium carbide, and downstream products are more likely to have better profit margin

PVC gross profit in CP and EP processes from 2016 to 2019 in China

Chlor-alkali and PVC (CP) value chain

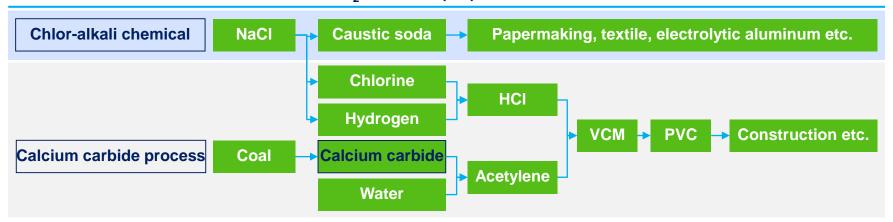

CNCIC

Domestic caustic soda output showed negative growth in 2016 and the consumption is highly correlated to macroeconomy


Caustic soda

- The supply and consumption gradually increase due to the recovery of macroeconomy, mainly driven by the demand in automotive (Al₂O₃), construction (Al₂O₃), textile, printing and dyeing sectors
- The capacity and output are mainly distributed in the North, Northwest and East regions, aligned with PVC producers
- 1,700 kt/v new capacity is expected to added and the market price is expected to be weak

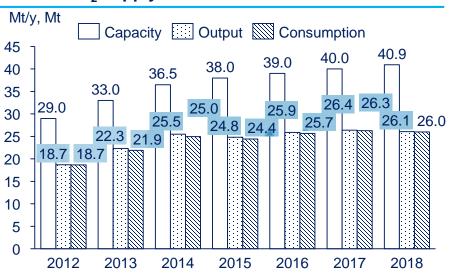
NaOH supply-demand from 2012 to 2018



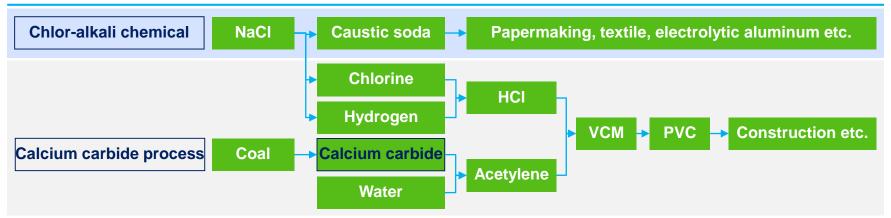
Chlor-alkali and PVC (CP) value chain

Environmental protection highly impacts the development of calcium carbide, which is also limited by the demand of PVC

CaC₂ and PVC (CP) value chain



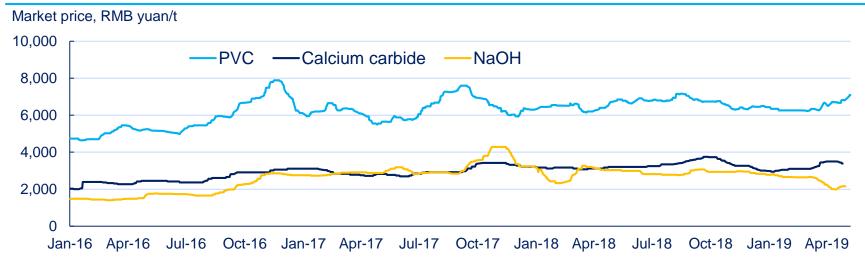
Environmental protection highly impacts the development of calcium carbide, which is also limited by the demand of PVC


• Calcium carbide

- China's CaC₂ capacity accounts for 95% of total global capacity
- The average operating rate is low, caused by stricter regulations and inspections
- Majority of capacity is distributed in Northwest and North regions, due to abundant reserve of CaCO₃, coal and semi-coke
- Acetylene, produced by CaC₂, is mainly used in organic synthesis (PVC, PVA, CR), desulphurization, welding etc.
- The output is expected to be affected by environmental protection inspections and the market price is expected to slightly increase

CaC₂ supply-demand from 2012 to 2018

CaC₂ and PVC (CP) value chain

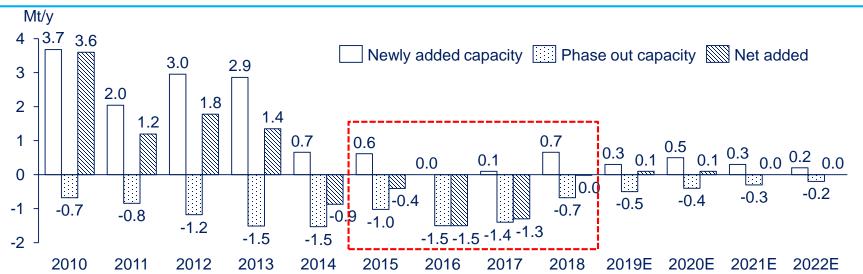


PVC market price roughly aligned with calcium carbide, but showed more fluctuations

• Market prices along the PVC value chain

- During 2016, caused by a general price increase in raw materials, the product prices increased and reached a 3-year high by the end of the year
- The prices soon started to drop caused by oversupply of various chemical products, and relatively low demand
 - ◆ The oversupply was caused by high price, where more and more chlor-alkali players entering the market, leading to additional capacity to be operated
- In 2018, given the market has adjusted itself to a relatively steady state, products along the value chain of PVC show relatively stable market prices
- The prices of calcium carbide and PVC are expected to increase in 2019

Calcium carbide, PVC and NaOH price evolution from 2016 to 2019 in China


Industrial planning policies significantly controls PVC blind expansion and the capacity is no long in surplus

- Industrial planning policy
 - < Guidance for Industrial Structure Adjustment Catalogue (2019, draft)>
 - ♦ Limits newly construction on EP process with capacity lower than 300 kt/y
 - ♦ Limits newly construction on calcium carbide capacity
 - ♦ Prohibits new CP capacity with high Hg based catalyst (HgCl₂ > 6.5%)
 - < Guidance on the Adjustment and Structure of Petrochemical Industry to Promote Transformation and Increasing Benefit (2016)>
 - ♦ Strictly controls PVC, and grants capacity replacement and reduction with advanced technology

Industrial planning policies significantly controls PVC blind expansion and the capacity is no long in surplus

- Industrial planning policy
 - < Guidance for Industrial Structure Adjustment Catalogue (2019, draft)>
 - ♦ Limits newly construction on EP process with capacity lower than 300 kt/y
 - ♦ Limits newly construction on calcium carbide capacity
 - ♦ Prohibits new CP capacity with high Hg based catalyst (HgCl₂ > 6.5%)
 - < Guidance on the Adjustment and Structure of Petrochemical Industry to Promote Transformation and Increasing Benefit (2016)>
 - ♦ Strictly controls PVC, and grants capacity replacement and reduction with advanced technology
 - Impact: such policy limited blind expansion and the capacity is no long in surplus; more capacities with low energy efficiency and high emission will be phased out

PVC capacity status in China from 2010 to 2022

- Environmental protection
 - < Minamata Convention on Mercury>, China Officially got approved in Aug. 2017
 - ♦ China will slightly phase out the usage of Hg in PVC production and eventually prohibit exploitation of primary Hg mines

- Environmental protection
 - < Minamata Convention on Mercury>, China Officially got approved in Aug. 2017
 - ♦ China will slightly phase out the usage of Hg in PVC production and eventually prohibit exploitation of primary Hg mines

< Minamata Convention on Mercury > evolution

China Officially got approved in Aug. 2017; prohibiting the exploitation of new primary mercury mines

- Environmental protection
 - < Minamata Convention on Mercury>, China Officially got approved in Aug. 2017
 - ♦ China will slightly phase out the usage of Hg in PVC production and eventually prohibit exploitation of primary Hg mines

<Minamata Convention on Mercury> evolution

2018

Capacity of CP process (using Hg as a catalyst) slightly decreased

2017

China Officially got approved in Aug. 2017; prohibiting the exploitation of new primary mercury mines

- Environmental protection
 - < Minamata Convention on Mercury>, China Officially got approved in Aug. 2017
 - ♦ China will slightly phase out the usage of Hg in PVC production and eventually prohibit exploitation of primary Hg mines

<Minamata Convention on Mercury> evolution

2018

Capacity of CP process (using Hg as a catalyst) slightly decreased

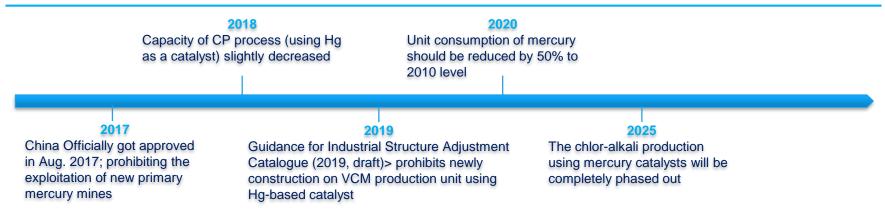
2017

China Officially got approved in Aug. 2017; prohibiting the exploitation of new primary mercury mines

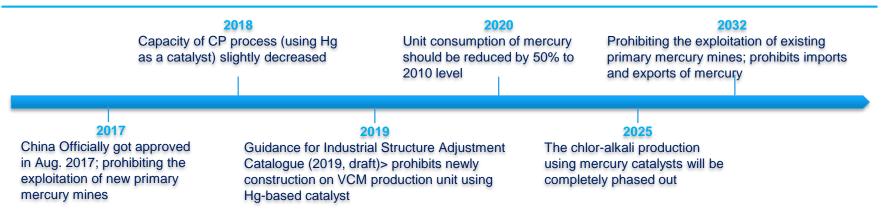
2019

Guidance for Industrial Structure Adjustment Catalogue (2019, draft)> prohibits newly construction on VCM production unit using Hg-based catalyst

- Environmental protection
 - < Minamata Convention on Mercury>, China Officially got approved in Aug. 2017
 - ♦ China will slightly phase out the usage of Hg in PVC production and eventually prohibit exploitation of primary Hg mines

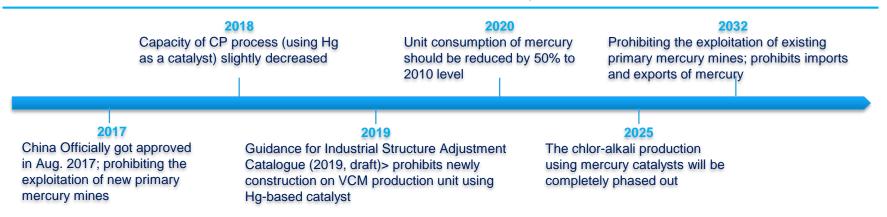

<Minamata Convention on Mercury> evolution

- Environmental protection
 - < Minamata Convention on Mercury>, China Officially got approved in Aug. 2017
 - ♦ China will slightly phase out the usage of Hg in PVC production and eventually prohibit exploitation of primary Hg mines


<Minamata Convention on Mercury> evolution

- Environmental protection
 - < Minamata Convention on Mercury>, China Officially got approved in Aug. 2017
 - ♦ China will slightly phase out the usage of Hg in PVC production and eventually prohibit exploitation of primary Hg mines

<Minamata Convention on Mercury> evolution



Environmental protection

- < Minamata Convention on Mercury>, China Officially got approved in Aug. 2017
 - ♦ China will slightly phase out the usage of Hg in PVC production and eventually prohibit exploitation of primary Hg mines

<Minamata Convention on Mercury> evolution

Technology upgrade


- Chlor-alkali industry under high pressure on Hg consumption as 60% of Hg is consumed in this sector
- Low Hg catalyst (6.5 w%) will have to substitute the traditional ones, in order to reach the goal of 50% reduction on Hg consumption
 - ♦ Alert: the increase of total Hg consumption aligned with PVC production from 2014 to 2018

Environmental protection

- < Minamata Convention on Mercury>, China Officially got approved in Aug. 2017
 - ♦ China will slightly phase out the usage of Hg in PVC production and eventually prohibit exploitation of primary Hg mines

<Minamata Convention on Mercury> evolution

Technology upgrade

- Chlor-alkali industry under high pressure on Hg consumption as 60% of Hg is consumed in this sector
- Low Hg catalyst (6.5 w%) will have to substitute the traditional ones, in order to reach the goal of 50% reduction on Hg consumption
 - ♦ Alert: the increase of total Hg consumption aligned with PVC production from 2014 to 2018
- Domestic manufacturers have achieved low-mercury and mercury-free technology
 - ♦ Dezhou Shihua is constructing a 200 kt/y capacity using 'CP+EDC Method' (姜钟法) in Shandong
 - Mercury-free, barium salt based catalyst with catalytic efficiency of 90% and low production cost

Thanks for listening and any question?

CNCIC Consulting 中国化信·咨询

Shiyao Wang | 王世尧
China National Chemical Information Centre

中国化工信息中心

Tel: +86 10 6443 7335

Mobile: +86 139 9276 8323

wangsy@cncic.cn

http://www.chemconsulting.com.cn